Question Paper

Exam Date & Time: 21-Jun-2024 (10:00 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SECOND SEMESTER BSc HEALTH SCIENCES DEGREE EXAMINATION - JUNE 2024 SUBJECT: BHS-1202 - CHEMISTRY II (NEW SCHEME)

Marks: 60

Duration: 150 mins.

Answer all the questions.

Answer the following in 2 or 3 sentences

2A) 2B)	Define ion-induced dipole type of interaction. Give one example. Identify the conjugate acid-base pairs for the following equations. i) $ClO^{-}(aq) + H_2O(l) \Rightarrow HClO(l) + OH^{-}(aq)$ ii) $HSO_{4}^{-}(aq) + CN^{-}(aq) \Rightarrow SO_{4}^{2-}(aq) + HCN(aq)$	(2) (2)
2C)	Explain how the following increases the rate of a reaction? i) Concentration ii) Temperature	(2)
2D)	The combustion of 5.00 grams of $C_2H_6(g)$, at constant pressure releases 259 kJ of heat. What is ΔH for the reaction: $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(I)$?	(2)
2E)	Arrange the following bases in the increasing order of their base strength. Give reason. (CH ₃) ₂ NH, NH ₃ , CH ₃ NH ₂	(2)
2F)	Consider the reaction: CH ₃ CI(aq) + OH-(aq) \leftrightarrow CH ₃ OH(aq) + CI-(aq) When the reaction is started with 0.10 moles of CH ₃ CI and 0.20 moles of OH-, 0.030 moles of CH ₃ OH are obtained at equilibrium. Calculate the equilibrium constant.	(2)

3A)	i) Mention the limitation of first law of thermodynamics. ii) The rate constant of a first-order reaction is 3.68 x 10 ⁻² s ⁻¹ at 150°C, and the activation energy is 71 kJ/mol. What is the value of the rate constant at 170°C?	(3)
3B)	Determine the heat of reaction, ΔH° , for the reaction, $Fe_2O_3(s) + FeO(s) \rightarrow Fe_3O_4(s)$ using the data given below. Data: $2Fe(s) + O_2(g) \rightarrow 2FeO(s) \Delta H^\circ = -544.0 \text{ kJ}$ $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s) \Delta H^\circ = -1648.4 \text{ kJ}$ $Fe_3O_4(s) \rightarrow 3Fe(s) + 2O_2(g) \Delta H^\circ = +1118.4 \text{ kJ}$	(3)
3C)	Explain phase diagram for water.	(3)
3D)	Describe construction and working of Zn-Cu voltaic cell with reactions (Note: Zn is anode and Cu is cathode).	(3)
3E)	Lead can displace silver from solution as follows: Pb(s) + 2Ag+(aq) \rightarrow Pb ² +(aq) + 2Ag(s) Calculate K and Δ G° at 298.15 K for this reaction.	(3)
3F)	Predict which solvent will dissolve more of the given solute? i) NaCl in methanol (CH ₃ OH) or in 1-propanol (CH ₃ CH ₂ CH ₂ OH) ii) Diethyl ether (C ₂ H ₅ OC ₂ H ₅) in water or in ethanol	(3)

Answer the following questions

4A)	i) A research chemist adds a measured amount of HCl gas to pure water at 25°C and obtains a solution with $[H_3 O^+] = 3.0 \times 10^{-4}$ M. Calculate [OH-]. Is the solution neutral, acidic, or basic?	(5)
	ii) Define system, surrounding and entropy for a reaction.	
4B)	i) Calculate the vapor pressure lowering, ΔP , when 10.0 mL of glycerol (C $_3H_8O_3$) is added to 500.	(5)
	mL of water at 50°C. At this temperature, the vapor pressure of pure water is 92.5 torr and its density is 0.988 g/mL. The density of glycerol is 1.26 g/mL ii) Salts from strong bases and weak acids give basic solutions. Give reason.	

-----End-----